Measurement of the branching ratio of a rare decay $\eta \rightarrow \pi^0 \gamma \gamma$ with WASA-at-COSY

Kavita Lalwani for WASA-at-COSY collaboration I.I.T Bombay, INDIA

MENU-2010

Kavita Lalwani, IIT Bombay

- Physics Motivation
- WASA-at-COSY setup
- Simulation
- Data Analysis
- Results
- Summary and outlook

Understanding QCD at low energy through a rare decay $\eta \rightarrow \pi^0 \gamma \gamma$

Two peculiar properties of QCD

Asymptotic Freedom : At high momentum transfers (short distances) Coupling small → quark inside hadron behaves as a free particle. Perturbative QCD explains experimental observations well .

Confinement : At small momentum transfers (large distances) Coupling large→ confinement of quarks and gluons inside hadrons. Perturbative QCD fails→ Effective field theory

QCD at low energy

Most successful Effective field Theory -> Chiral Perturbation Theory

Lagrangian in terms of increasing powers of momentum in χPTh
O(p²) is absent, because no direct coupling of photon with π⁰ and η.
O(p⁴) very small, because hadronic loops are suppressed.
O(p⁶) first sizable contribution.

The reaction $\eta \rightarrow \pi^0 \gamma \gamma$ is a gold plated test of higher order χPTh.

Ref : Phys. Rev. I	0 67,073013	(2003)
--------------------	-------------	--------

Theory	$\Gamma(\eta \rightarrow \pi^0 \gamma \gamma)$
χ PTh, O(p ²)	0
χ PTh,+ O(p ⁴)	0.004
χ PTh,+O(p ⁶)	0.42 ± 0.20
χ PTh,+O(p ⁶)	0.47
χ PTh,ENJL+O(p ⁶)	0.58 ± 0.30
VMD	0.30 ± 0.15
Q box	0.70
χ PTh,+O(p ⁶)	0.44 ± 0.09
Unitarized χPTh	0.47 ± 0.10

Theoretical predictions for $\eta \rightarrow \pi^0 \gamma \gamma$

QCD at low energy

- Another stringent test of the theory would be the shape of the invariant mass of two photons not forming a pion.
- Earlier studies have been hampered by the lack of statistics.
- We have 3×10^7 total eta produced in 2008 and 2009.

Previous Measurements

Experiments	BR(η \rightarrow π ⁰ γγ)
GAMS	$(7.1 \pm 1.4) \times 10^{-4}$ [3]
Crystal Ball	$(2.21 \pm 0.24_{\text{stat}} \pm 0.38_{\text{sys}}) \times 10^{-4}$ [1]
KLOE	$(8.4 \pm 2.7_{\text{stat}} \pm 1.4_{\text{sys}}) \times 10^{-5} [2]$

- The existing experimental results of BR($\eta \rightarrow \pi^0 \gamma \gamma$) and theoretical calculations for $\Gamma(\eta \rightarrow \pi^0 \gamma \gamma)$ vary a lot.
- Motivated us to measure the branching ratio of $\eta \rightarrow \pi^0 \gamma \gamma$ with WASA-at-COSY.
- [1] S. Prakhov et al., Phys. Rev. C 78, 015206 (2008).
- [2] B. Di Micco et. al., Acta Phys. Slov. 56, 403 (2006).
- [3] D.Alde, et al. Z. Phys.C 25, 225(1984).

WASA-at-COSY setup

COSY (Cooler SYnchrotron)

Operated at the Institute For Nuclear Physics (IKP), Forschunszentrum, Juelich in Germany.

Salient features:

- Circumferences : 184 cm
- Delivers polarized and unpolarized proton and deuteron beams in the momentum range 0.3 to 3.7 GeV/c

WASA-at-COSY setup

WASA (Wide Angle Shower Apparatus)

Reaction: $p + d \rightarrow {}^{3}He \eta \rightarrow {}^{3}He \pi^{0}\gamma\gamma$

Salient features of WASA

MENU-2010

@ beam kinetic energy 1.0 GeV

- $pd \rightarrow {}^{3}He \eta$
- pd \rightarrow ³He $\eta \rightarrow$ ³He $\pi^0 \gamma \gamma$
- pd \rightarrow ³He $\eta \rightarrow$ ³He $3\pi^0$

Analysis of pd \rightarrow ³He η

• Production run : September – November 2008.

Measured : 8.014×10^6 η events from missing mass of ³He analysis Reconstruction efficiency : 77% \Rightarrow Total eta produced : 1.03×10^7

Analysis of pd \rightarrow ³He $\eta(\rightarrow \pi^0 \gamma \gamma)$

- As the branching ratio of the channel is very small (~10⁻⁴), detailed simulations are required
- On the basis of simulations the following channels contribute as the background

Background Channel		Cross section
$pd \rightarrow {}^{3}He \ 2\pi^{0}$	Four photons in the final state	1.5 μb
pd \rightarrow ³ He $3\pi^0$	Overlapping of two photon cluster or	0.10 µb
$\eta \rightarrow 3\pi^0$	missing of two photons	0.12µb

 η Production cross section : 0.4 μb

Event Selection Criteria

Basic Conditions

- One charged track in the Forward Detector
- Four neutral clusters in the Central Detector with $E_{dep} > 20 \text{ MeV}$
- No charged track in the Mini Drift Chamber (MDC)

Simulations

Missing mass of ³He for signal and contributing channels

 3×10^{6} events generated using event generator PLUTO @ T_{beam}1.0 GeV.

Further Selection Criteria

Simulations $\eta{\rightarrow}3\pi^0$, pd ${\rightarrow}^3\text{He}\;3\pi^0$

-0.1 < Missing energy of full event < 0.1 GeV

Energy deficit in the final state because of the two photon missing in the forward direction

Simulations $2\pi^0$

Kinematic fitting

- Four photons in the final state \longrightarrow Kinematically subset of the signal events $\eta \rightarrow \pi^0 \gamma \gamma$
- Two hypothesis have been simultaneously confirmed for each event

pd \rightarrow ³He $\pi^0\pi^0$ pd \rightarrow ³He $\pi^0\gamma\gamma$

- Selecting $2\pi^0$ confidence level less than 0.01%, throws away most of the $2\pi^0$ background.
- Selecting $\pi^0 \gamma \gamma$ confidence level greater than 0.1, accepts good $\pi^0 \gamma \gamma$ events.

Simulations $2\pi^0$

Discarding all events for which $m_{max}(\pi^0\gamma)$ lies above the line

- $m_{max}(\pi^0\gamma) = 4.062 \times m(\pi^0\gamma\gamma) - 1.627$

Simulations

Scattering angle $(\theta_{\pi} 0_{\gamma\gamma}) < 70^{\circ}$

2/06/2010

Event Selection Criteria

Reconstruction Efficiency (%)

Condition	ε(η→π ⁰ γγ)	ε(η→3π ⁰)	ε(2π ⁰)	ε(3π ⁰)
Preliminary cuts	42.5	4.97	3.88	1.61
-0.1 <mesys 0.1,<br="" <="">IM_{η} > 0.529 GeV/c²</mesys>	26.36	0.81	2.37	0.23
$CL(2\pi^0) < 0.01 \%$	18.48	0.71	0.043	0.202
Cut on 2d ($m_{max}(\pi^0\gamma)$), m($\pi^0\gamma\gamma$)	18.3	0.71	0.023	0.102
$\mathrm{CL}(\pi^0\gamma\gamma) > 0.1$	13.90	0.304	0.0023	0.085
$\theta_{\eta} < 70^{0}$	13.84	0.30	0.001	0.083
$IM_{2\gamma} > 0.179$	12.28	0.20	0.0006	0.080
35^{0} < Opening angle(³ He and $\pi^{0}\gamma\gamma$) < 70^{0}	9.04	0.10	0.0003	0.053

Missing mass of ³He

To find out $\eta \rightarrow 3\pi^0$ events in the same data set

• Reconstruction efficiency of $\eta \rightarrow \pi^0 \gamma \gamma$ is 9.04% and the reconstruction efficiency of $\eta \rightarrow 3\pi^0$ is 0.10% as background.

• After subtracting remaining contributions of background, we have measured $300\pm54 \ \eta \rightarrow \pi^0 \gamma \gamma$ events.

• Statistical error on the branching ratio of $\eta \rightarrow \pi^0 \gamma \gamma = 0.7 \times 10^{-4}$

- Monte Carlo describes the experimental data.
- Measured 300±54 $\eta \rightarrow \pi^0 \gamma \gamma$ events and statistical error on branching ratio of $\eta \rightarrow \pi^0 \gamma \gamma$: 0.7×10⁻⁴

Outlook

- Can investigate whether additional condition of z vertex would increase the signal to background ratio.
- Understand $\eta \rightarrow 3\pi^0$ background and estimate other systematical errors.
- Extract the spectrum of invariant mass of 2γ with more statistics in 2009.

WASA-at-COSY collaboration

MENU-2010, 2/06/2010 Kavita Lalwani

MENU-2010, 2/06/2010 Kavita Lalwani

Simulations

Invariant mass of $\eta (\rightarrow \pi^0 \gamma \gamma)$ for signal and contributing channels

2/06/2010

Back up slides

Simulations

35° < Opening angle (³He, $\pi^0\gamma\gamma$) < 70°

Calculation of the branching ratio of $\eta \rightarrow \pi^0 \gamma \gamma$

$$BR(\eta \to \pi^{0} \gamma \gamma) = B_{1} \times (BR(\eta \to 3\pi^{0}))$$
$$B_{1} = \frac{n(\eta \to \pi^{0} \gamma \gamma)}{n(\eta \to 3\pi^{0})}$$
$$n = N / \varepsilon$$

Here
$$N(\eta \rightarrow \pi^0 \gamma \gamma) = 289$$

 $\epsilon = 9.04\%$
 $N(\eta \rightarrow 3\pi^0) = 7.84 \times 10^5$
 $\epsilon = 27\%$

BR($\eta \rightarrow 3\pi^0$) = 32% (PDG value)

$$BR(\eta \rightarrow \pi^0 \gamma \gamma) = (3.48 \pm 0.67_{stat}) \times 10^{-4}$$

Results

- We have measured 300 $\eta \rightarrow \pi^0 \gamma \gamma$ events.
- Reconstruction efficiency from Monte Carlo is 9.04% and the reconstruction efficiency of $\eta \rightarrow 3\pi^0$ 0.10% as background.
- Statistical error on the branching ratio of $\eta \rightarrow \pi^0 \gamma \gamma = 0.7 \times 10^{-4}$ After subtracting $\eta \rightarrow 3\pi^0$ background

